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Abstract We employ a timedependent Landauer approach to study the dynamic response of 
a mesoscopic conductor biased with a temporal varying voltage. The system is modelled as a 
perfect conducting wire coupled to two large electron reservoirs whose chemical potentials are 
driven offset by the bias. The electronic waves are quantized on the basis of o n h o n o d  wave 
packets moving along lhe conductor. The time for an electron to traverse the wire between the 
source and the draio reservoirs is found to be the relevant time scale in deermining the hansient 
response and the characteristic frequency of the AC conductance. 

1. Introducrion 

Electronic transport in mesoscopic systems is a field of increasing interest for its fundamental 
importance as well as for its potential technological applications [l, 2.1. The qcantum 
nature of this problem has been successfully described by the Landauer approach [ I ,  31 
for two probe systems and the Buttiker-Landauer approach [4] for multi-probe systems. 
An elegant example is the ballistic transport through a two-dimensional point contact 
system: its conductance was found to be quantized at multiples of a fundamental constant 
e 2 / h  [5,6]. While the DC characteristics of variousmesoscopic systems are well understood, 
investigation of dynamic properties has been limited to systems such as double-barrier 
resonant-tunnelling structures [7]. In these systems, the energy scale Ac over which the 
nansmission coefficient [TI2 varies significantly determines the characteristic frequency and 
the transient time [&I41 since the time scale 5 = R/AE is the longest among all the 
relevant time scales. When the frequency of an AC bias is greater than k / s ,  the system 
becomes unable to respond instantaneously and consequently the conductance falls below 
its DC level. In a recent paper, Biittiker et a1 [15] investigated the AC admittance of general 
mesoscopic conductors and found that energy dependence of the phase shift in the scattering 
matrix gives a relevant time scale for the frequency response. In a perfect conductor, 
however, the conducting channel can be completely open and the transmission coefficient is 
energy independent. Therefore the aforementioned time scale as determined by the energy 
dependence of the scattering mahix is irrelevant. One can then ask the question of what is 
the new relevant transient time scale, or, at what frequency does the AC conductance start 
to deviate seriously from its DC limit. In this paper, we answer this question and provide 
a derivation of the frequency dependent conductance as well as the imaginary part of the 
admittance. The method we employ is a time-dependent Landauer approach. As will be 
illustrated in the following discussion, the relevant time scale is determined by the time for 
an electron to traverse the conducting channel from the source reservoir to the drain, namely, 
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ro = L / u ,  where ug is the group velocity of an electron wave packet in the channel. With 
increasing frequency S2 of the applied bias voltage, the response current decreases and its 
spatial variation at length scale of En = ug/G also becomes observable at high frequencies. 
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2. Time-dependent wave packet formalism 

In the Landauer approach, a mesoscopic conductor is pictured as an elastic scatterer and 
thus the scattering wave functions are of essential importance 1161. The system we study in 
this work can be characterized by a Hamiltonian consisting of the kinetic energy plus the 
geometric confinement potential energy which divides the electron gas into two 2D regions 
(reservoirs) and a onedimensional channel. Here we choose the coordinates with the x axis 
along the channel and the y axis perpendicular to it. In the adiabatic approximation [ 171, 
the incident waves on the channel are either completely transmitted or completely reflected. 
A wave, # b ( x ,  y), incident from the left and completely reflected extends only in the left 
reservoir region and a wave @ ( x .  y) incident from the right and completely reflected exists 
in the right reservoir. In  addition to these two sets of reservoir states, there exist channel 
states including waves incident from the left or right and completely transmitted to the 
other side which extend throughout the channel region from one reservoir to the other. 
The coherence length of a channel state is determined by scattering within the reservoirs 
as well as by its coupling to the reservoirs. Its value is obviously system dependent and 
can be experimentally tuned. Starting from the extended channel states in the adiabatic 
approximation, we construct orthonormal wave packet states 

(2.1) 

y) of the form 
- 
bk.a(x, Y )  = # ( Y ;  x O ) # k , X o ( x ) .  

Here +(y: x g )  is the lateral wave function [I71 

where U ( x )  is the width of the channel at position x .  The wave packet along the x direction 
is defined as 

which is centred at xo with a width 5 = 2n/o. (Here Lo is the size of the entire system 
and N = oL0/2r.) The average momentum E(k, XO)  is a function of the position of the 
centre of the wave packet defined as 

(2.4) 

In equation (2.4). hk is the average of the momentum at the centre of the channel (x=O). 
The wave packet thus constructed forms an orthonormal set if we choose E to be multiples 
of U ( I ;  >> U) and xo to be multiples of b .  We use the complete set of wave functions 
#b(x ,  y), $ ( x .  y) and & m ( x ,  y) to perform the second quantization of electron waves. 
The electron field operators 
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and its Hermitian conjugate @t(x, y )  satisfy the canonical anti-commutation relations and 
ckq and cLo are respectively the canonical femionic annihilation and creation operators on 
the state q5kxo(x). Obviously. there exist couplings between the channel states (the scattering 
wave packets) and the reservoir states by for example impurities in reservoir regions adjacent 
to the channel. This coupling can be modelled in a simple transfer matrix form. Then the 
Hamiltonian of the system can be written as 

H = HD + ( W L C ~  + Ti@, xo: p)cLoap + T;(k,  xo: p)aLckxo 
k ro P 

P 

(2.6) 
where a tem in order of a' has been dropped IlS]. The coupling coefficients T,(k ,  XO;  p )  
and T@, xo; p )  are respectively determined by the overlap between &(I) and the reservoir 
electron wave functions. a ,  at and 6 ,  bt are respectively the annihilation, creation operators 
of electrons in the two reservoirs with Hamiltonians HI and Hz. The drifting part of the 
Hamiltonian 

(2.7) 

drives the particles on the wave packets qkz0 states with momentum h i  > 0 moving to 
the right and those with h i  < 0 moving to the left. It is convenient to transform into the 
interaction representation of HD, resulting in an effective Hamiltonian Hm 

+ C T z ( t ) c ~ b , + T ; ( t ) b i c x ,  + H l ( u , a t ) + H z ( b , b t )  (2.8) 

where TI(?) Tl(k,  xo(f, k ) ;  p )  represents the coupling between the left reservoir and the 
moving wave packet state &=@(x, y; t )  &xo(t,kl(x, y) and so does Tz(t)  for the coupling 
to the right reservoir. We have adopted the notation xo( t ,  k )  for the centre of the wave packet 
at time f .  Note that the time-dependent wave packet state q5kxkro(x, y, I )  s & ( x  -x&. k ) .  y) 
is still characterized by the quantum number xo (the position of the centre of wave packet 
at f = 0) and k (average wavevector of the wave packet at the centre of the channel). 
The description of the system by the Hamiltonian He*. is equivalent to choosing time- 
dependent basis states for the second quantizated operators & and ck,xo such that they 
create and annihilate the timedependent wave packet state q5ho(x, y. f) respectively. This 
is the reason why the coupling between the channel state and the reservoirs q ( f )  and T&) 
depend on time even in the absence of timedependent biases. Our procedure of arriving 
at Heff. through a canonical transformation from the original Hamiltonian H simply gives 
a rigorous justification for this physically transparent choice. 

P 1 

3. Frequency dependent admittance 

When the length of the conductor L >> e ,  the current carried by hopping from one reservoir 
to the other via a channel state is negligibly small and charges are only transported by the 
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drifting motion of the wave packets. Namely, the current operator can be written as 
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whose quantum statistical average yields the intrinsic current. The time dependence of 
the creation and annihilation operators here is govemed by the effective Hamiltonian 
Her. Generally, the measured current, i.e., the circuit current I ( t )  can be a complicated 
convolution of ( i ( x ,  I ) )  which involves the detailed information of the conductor geometry, 
the voltage probe contacts and, especially, the capacitance distribution [16]. In what follows 
we shall concentrate our discussion on the intrinsic part with emphasis on the physics 
involved. 

Due to strong dissipation in the reservoirs, electrons there can be well described by 
separate equilibrium density matrices with chemical potentials p ~ ( t )  and p . Z ( f )  respectively 
which are driven away from the Fermi energy 6~ by the applied bias voltage u ( t ) :  
pl = EF + eu( t ) /2  and p z  = EF - eu( t ) /2 .  With the help of the Keldysh formalism 
of non-equilibrium Green functions 1191, the occupation number of the channel state Tkx0 
can be found as 

n(k,xo. 0 = (c~,(t)cxx&)) 
CO t 

= l m d r W - r ) e x p ( - 1  du y ( k . x ~ , . ) )  

x [Y I (~ .  10. r ) f i (~ )  + n(k *o, ~ ) f z @ ) ] .  

PIU) and M) respectively. Y ( ~ , x o ,  I )  = n ( k , x ~ ,  t )  + y d k ,  XO, 0 and 

(3.2) 
Here f ~ ( t )  and f 2 ( f )  are the Fermi-Dirac distribution functions with chemical potential 

Yl(2)  = ITl~z,(I)I2zs(€, - d. (3.3) 
P 

The detailed evaluation of y~(2 )  requires a knowledge of the precise geometry of the confining 
potential for the channel as well as the scattering mechanisms. For our purpose, it is 
sufficient to replace the channel by a constant width region with an effective length L.  The 
coupling matrix elements y1 and y2 are characterized by an overall scattering strength y .  
We write yl(2) in terms of these two parameters as 

- y z  
n ( k , x o ,  t) = y L C O  ~ ~ + ~ ~ ~ k r o x , o ~ ~  = Y l ( x o ( t , k ) )  

yz@,~O> t )  = Y s,,, ~ l + k x X & ,  f)lZ = YZ(xo(t? k ) ) .  

(3.4) 

(3.5) 
m 

Furthermore, we choose y to be related to the wave packet size in the form y = h2ka/2nm. 
The final results will be independent of y as long as L >> 8 .  In figure 1, we illustrate the 
time dependence of yl(2). Note that yl(x0(1, k ) )  evolves with time monotonously from y 
where xo(t, k )  << - L / 2  to 0 where xo(t ,k) >> -L /2 .  Moreover, the variation is mainly 
located around xo(f ,  k )  = -LIZ. Similarly, yz(xo(f ,  k ) )  evolves from 0 at xo( t ,  k )  <( L / 2  to 
y at xo(t,  k )  >> L / 2 .  Consequently, y ( x o ( f ,  k ) )  approximately vanishes inside the wire and 
takes a constant value y outside it. On examining the integrand in equation (3.2), we find 
that the first part peaks at xo(7, k )  = - L / 2  while the second one peaks at XO(T,  k )  = L / 2 .  
Therefore the occupation number of the right moving electrons in the channel region 

n(k,xo,r) = l m d r e x p ( - l r d u  v(xo(u.k)) (3.6) 
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is only fed by the left (first) reservoir. In equation (3.6) and the following equation (3.7). 
k z 0. 'Ihe left moving electrons are fed by the right (second) reservoir, 

(3.7) n(-k,xo, t )  = r d i e x p  (-1 du V(XO@, - k ) )  M(XO(U,  - k ) ) f d s ) .  

With equations (3.6) and (3.7), the origin of the relevant time of the system becomes 
transparent Once an electron (a wave packet) emanates from a reservoir into the channel, 
it will move ballistically in this dissipationless region with definite velocity (xo(t, k )  = ut 
with U = Ak/m) and becomes free from further influence of the dissipative reservoirs until 
it emerges at the other end. Consequently, the system is unable to respond to an applied 
bias on a time scale shorter than ro = L/u,.  The group velocity of the wave packet vs is 
just the Fermi velocity in the channel. 

) 
t 

1 
5 2 0.8  
a, 
%I 

v) 
0.6 

$ 0 . 4  
.3 
rl 9 0.2 
0 
U 

0 
-10 -5  0 5 10 

wavepacket center 
Figure 1. The coupling seenglh of a wave packer to the reservoirs yc(xo(t. k)) (solid curve, 
scaled by y )  and n(xo(1. k)) (dashed c w e .  scaled by y )  versus the centre of the packer 
(xo(1 .k) )  (scaled by e).  The conductor length L=IOQ. 

Now we study the frequency dependent admittance of the system subject to an applied AC 
bias u(t )  = uoe-'". At zero frequency s2 = 0, one can show that all the left moving wave 
packet states are fully occupied while all the right moving ones empty when the left (first) 
reservoir is biased as the source and the right (second) one as the drain pl - p.2 = euo > 0, 
I.e., 

n(k,xo, t )  = 1 n(-k,  xo, t )  = 0 (3.8) 
where k =- 0 and p2 < €k < p l .  Then one ObSeNeS a uniform current throughout conducting 
wire 

(3.9) 

with the transmission coefficient I T ( Q ) ~ '  = 1 in this case. Quation (3.9) is the well known 
Landauer formula which leads to DC conductance G = e 2 / h  for the singlechannel two- 
probe system we consider here. Generally, G = n e z / h  when n channel state subbands are 
contributing [5, 61. 

When the signal voltage lu(r)l << 6F/e. the reservoir distribution functions can be 
expanded as 
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where f&) is the equilibrium Fermi-Dirac distribution function. Furthermore, a coarse 
graining procedure can be performed over the extension of a wave packet, i.e., we can 
approximate cm by ( 1 j ~ ) ~ d x o  and the current becomes 

L Y Chen and S C Rng 

(3.10) 

(3.11) 

As already discussed above, at zero frequency, g ( x ,  S2 = 0) = 1 is purely real and uniform 
throughout the channel region. At a finite frequency S2 comparable to S2o = 2nvp/L, g 
becomes complex and oscillates with x .  These behaviours are illustrated in figure 2. In 
figure 3, we plot the averaged relative admittance 

LP 
f(Q) = 1s d.x g(x,  Q) 

L - 4 2  

versus As the frequency increases, the system becomes less and less capable of 
following the change of u(t) .  This results in the decrease of admittance amplitude and the 
retardation in response leads to an inductive behaviour as demonstrated by the imaginary 
part of the admittance. The characteristic frequency 520 typically lies in the range between 
a few GHz and a few THz. Although directly probing the spatial variance of current within 
the channel poses considerable challenge, the experimental measurements of the average 
admittance for frequencies up to several THz are certainly feasible. Similar experiments 
have actually been canied out for the double barrier structures [9]. 

-0.4 -0 .2  0 0.2 0.4 
X/L 

Figure 2. The relative admittance p ( x ,  R) as a function of spatial coordinate x / L  for 52 = Rg 
(the solid curve is ils real pad and he dashed curve is its imaginary part). 

4. Summary 

In summary, we have presented a time-dependent Landauer approach to study the dynamic 
response of a mesoscopic conductor and demonstrated the frequency dependence of its 
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Figure 3. Average relative admittance j (n )  against n/no. The solid curve is the real pad 
(conductance) and the dashed line is the imaginary pad. 

admittance. The relevant time scale is found to be the time for an electron to traverse 
the dissipationless conducting wire between the reservoirs which leads to a characteristic 
frequency GO = 2nvg/L with vg, the group velocity of the electron in the channel and L, the 
effective length of the channel. When the bias frequency exceeds 00, the average admittance 
falls below its DC limit and spatial variations start to appear on a scale In = vg/Q.  Although 
only a single-channel two-probe model is considered in the present work, the conclusion 
we draw here should also hold for the more general two-probe systems. Moreover, this 
work can also be generalized to include the displacement current which, at high frequencies, 
may yield a contribution to the total measured circuit current comparable to the intrinsic 
part fully discussed here. Finally, the present study is based on the assumption that the 
reservoirs respond to the signal electric field immediately. This naturally imposes an upper 
restriction on the frequency given by the inverse of the reservoir dissipation time which is 
typically around 10 THz. 
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